
Level generation techniques for platformer games

Tobiáš Potoček
CSCI 5670: Fundamentals of Game Development

University of New Orleans
tobiaspotocek@gmail.com

ABSTRACT
Procedural level generation for platformer games, like for ex-
ample Super Mario Bros, brings up lots of interesting chal-
lenges. Generating a new level that is winnable and at the
same time fun to play, i. e. it is neither too easy nor too dif-
ficult, is not a trivial task. In this paper, I look at the level
generation from a bigger perspective, I address the main as-
pects and challenges of level generation and then I describe
several different general approaches and how they face those
challenges. For each general approach I mention at least one
existing concrete implementation and I explain its specifics.

1. INTRODUCTION
Procedural content generation has been around for a long

time but it has probably not revealed its full potential yet.
In the old times, when the memory and disk space was still
an issue, procedural content generation (or PCG) was a way
how to put a lot of game content into a limited space. It
was also a way how to make the game different each time
it was played. A typical example of that would be Diablo
where the game world was regenerated every time the player
started a new game.

The game developers nowadays usually do not have to
deal with the space and memory limitations (at least not
as much as they used to) but they have to face other chal-
lenges that have been brought by the development of mod-
ern games. One example could be that some modern game
worlds are getting extremely vast and it is usually expensive
and time consuming to use just human resources to design
and populate those worlds. The procedural content gener-
ation already helps in this matter but there is still lots of
potential.

One of the issues here is that PCG techniques are not
perceived as reliable enough by many commercial game pro-
ducers [2]. There are high quality requirements regarding
the content presented to the players and PCG techniques
are often not considered capable enough to meet those re-
quirements. PCG techniques are used only for the simple

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CSCI 5670 University of New Orleans
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

and less essential tasks such as populating the game world
with trees and other natural objects that serve merely as
a decoration. The goal of the research going on in PCG is
to push its abilities beyond the simple tasks and make it
capable of producing more complex content that would still
meet the high demands of the players.

One of the areas that the research is focused on is level
generation of platformer games, like for example Super Mario
Brothers (or just Mario) (there is even a championship or-
ganized on a regular basis in generating levels for this game
[2]). There are many reasons why the research picked plaformer
games. Firstly, a level is usually a fairly simple structure:
two dimensional grid of tiles. Secondly, the restrictions that
all levels should follow are pretty straightforward. Each level
has to be playable. Thirdly, platformer games like Mario are
common and there is lots of existing human created content
that can serve as inspiration. And lastly, a typical level is
not very long which makes it easily testable. A human player
can finish many generated levels in a short period of time
and provide valuable feedback.

The level generation brings many challenges. Besides al-
ready mentioned level playability, the ultimate goal is to
make the levels fun to play. That goes, to a certain extent,
against the playability demand: if we did not care about
the fun, making a level that it is possible to finish would
be very easy. Also just the definition of what is considered
fun is a challenge of itself as it is a very subjective matter
and every player is different. It is usually easier to agree on
what keeps the levels from being fun to play. Usually levels
that are too easy or too difficult, repetitive or simply not
esthetically pleasing could be considered as not fun. A good
level generator has to take all these aspects into account.

Some researchers went even further and decided to face the
challenge of subjectivity by introducing generators that au-
tomatically adapt to the player’s style. It usually involves a
learning phase when the generator analyses the style of play-
ing and extracts certain characteristics (mainly the skill, i.
e. how good the player is). The characteristics are then used
to generate the next levels in an attempt to tailor the level
to the particular player and improve his play experience.

In the following sections, the paper will first introduce
a basic framework used for the level analysis, then it will
present and compare several level generation techniques cat-
egorized by their type and eventually it will describe couple
of adaptation approaches. The paper will be concluded with
an overall summary.

2. FRAMEWORK FOR ANALYZING 2D PLAT-
FORMER LEVELS

Before we dive into the individual algorithms, we lay out
a basic framework and vocabulary for analyses of the levels.
The framework is taken over from the paper by Smith, Cha
and Whitehad [4]. The algorithms mentioned later are not
necessarily built on top of this framework, but the frame-
work does mention few concepts that are quite common and
important.

The framework defines each platformer level as a hierar-
chical structure. The base elements are:

• Platforms. A solid surface on top of which the charac-
ter can walk and jump.

• Obstacles. Anything that the player has to either avoid
or eliminate, usually an enemy.

• Movement aids, e. g. springs that allow the character
jump higher.

• Collectible items, e. g. coins.

• Triggers. Interactive objects that the game character
can use to alter the state of the level.

The base elements are used as building blocks that form
rhythm groups. Individual rhythm groups are joined with
safe places where the character can rest a bit. A sequence
of rhythm groups creates a cell which is a room or an area of
uninterrupted space within which the character can operate.
The whole level is then composed of several of these cells
that are connected by portals. In case of Mario, the portals
are the tubes connecting individual separated rooms.

Perhaps the most important notion here are the rhythm
groups. A rhythm group is usually a short challenging se-
quence that the player has to go through without a break
(stopping would usually mean a failure). The rhythm groups
are called in such a way because they create the rhythm of
difficult and easy parts taking turns in the level. Well de-
signed rhythm groups and their distribution within the level
are the core factors affecting the quality of the final level.
Therefore it is one of the main challenges of level generation:
to generate good rhythm groups.

3. LEVEL GENERATION
In the following section, we will look at different tech-

niques used for level generation and how they face the main
challenges. Each generator can be assessed from multiple
perspectives.

• Are the levels playable (i. e. is it possible to finish
them)?

• Are the generated levels fun to play?

• How fast is the generator? Can it generate levels in
real-time?

• How varied are the generated levels? Do they all look
the same?

• Are the levels aesthetically pleasing? Do they look
natural?

• Does the generator require human input?

All of these aspects directly affect the usability of the gen-
erator. For example, a generator producing good levels that
however all look the same, is not a very usable generator.

The generators, that we are going to mention, fall into
three general categories: agent-based (or constructive) gen-
erators, search based generators and combinations of the
previous two (compositional generators).

3.1 Agent-based (or constructive generators)
Agent-based generators can be very simple. Probably the

simplest approach, that can be found in various online tu-
torials, would involve one agent simulating the movement of
the game character (running and jumping). We would let
this agent randomly move and jump in an empty level while
recording all his movement. Based on the recorded path, we
would add platforms and other objects to the level. This
approach easily meets the number one requirement: playa-
bility. However, it’s questionable how fun those levels would
be. For that reason, more advanced techniques are usually
used.

What is common for all constructive generators is that
there is no backtracking involved and the whole level is gen-
erated in just a couple of sweeps. The distinct advantage of
this approach is the speed.

A good example of a pure constructive generator is Rhythm-
Based Level Generator by Smith, Gillian and Treanor [5].
The core of this algorithm is in generating rhythm groups
that are fit together with small platforms serving as resting
areas. Each rhythm group is based on a rhythm which is a se-
quence of actions like moving and jumping (the idea is simi-
lar to the one mentioned in the beginning of this subsection).
Then a simple grammar is used to interpret the rhythm as a
geometry. For instance, a jump can be interpreted as an en-
emy or as a gap. Thanks to this approach, each rhythm can
by interpreted as many different geometries, providing the
necessary level variability. Physical constraints are applied
as well to ensure the playability.

This approach is really fast and is capable of generating
a large number of levels in a short time. Not all of the
levels, however, are necessarily good. For this reasons, global
critics are applied that pick the best one according to various
criteria (e. g. the frequency of certain components, like gaps,
should be close to the frequency considered to be ideal).
Finally, some global passes are applied on the level to tie it
to the ground or to add coins.

Another constructive generator is Probabilistic Multi-Pass
Generator by Ben Weber. This generator actually won the
AI championship described in [2]. This generator also hap-
pens to be the least complicated one of those submitted
to the competition. The generation process consists of six
passes, where each pass places a different component type
by traversing the level from left to right [2] (using a dif-
ferent vocabulary, we might say that the generator uses six
different agents that place components on the level). The
components are placed on the map according to configurable
probabilities and constrains ensuring playability. The result-
ing generator is fast (capable of real-time generation) but the
generated levels lack variation.

Constructive generators contain one distinct subgroup of
generators that heavily depend on prepared human-created
content. A typical algorithm from this group involves com-
bining of hand-crafted chunks into the complete level. The
quality of the resulting levels depends on the input mate-

rial. That can be under different circumstances both an
advantage and a disadvantage. But the fact remains that
one of the points of PCG is to reduce the need of human
participation to minimum. Occupancy-regulated extension
by Peter Mawhorter or LDA-based level generator by Robin
Baumgarten fall into this category (both described in [2]).

3.2 Search-based generators
Search-based generators are based on a completely dif-

ferent idea. As the name suggests, the base principle is to
search through the space of all existing levels and pick the
best one for us according to given criteria. The search is usu-
ally performed using a machine learning technique (typically
an evolutionary algorithm) where those criteria are encap-
sulated by a fitness function that determines how good an
individual level is. The definition of good might vary.

An example of pure search-based generator is the one cre-
ated by Nathan Sorenson and Philippe Pasquier for the AI
championship [2]. They use an evolutionary algorithm that
in every iteration picks the best levels in the current popu-
lation using the fitness function and combine them to cre-
ate the next generation. The main attribute that the fitness
function is looking for is the presence of rhythm groups which
are considered to increase the level entertainment value. Be-
fore the algorithm starts, the fitness function is trained (the
best suitable values for the constants within the function
definition are found) using existing levels that provide both
good and bad examples of how a level should look like. On
top of that, the authors use a constraint satisfaction subsys-
tem that ensures that all levels are playable.

In general, the problem with this technique is the speed
as the training and evolutionary algorithms are computa-
tionally very intensive. What is interesting, however, is that
there is a very natural way of how to improve the results (or
get good results faster). It is possible to simply use existing
human-created levels as the initial population and if the fit-
ness function is well-trained, then any levels built on top of
those levels will be good as well yet they will be different (i.
e. the level variance can still be decent).

3.3 Compositional generator
A procedural procedural level generator generator [1] is a

generator that combines both of the previously described
techniques. The agent-based inner generator is responsible
for the actual creation of the level. The agent simply runs
around the (initially empty) level and changes tiles. Such an
agent can be parametrized using values that define his be-
havior, i. e. what kind of level he is supposed to generate.
Those values are provided by a search-based outer genera-
tor. The general idea is that instead of creating and opti-
mizing an agent-based generator ourselves, we use a search-
based generator to do that for us. So whereas the search-
based generator by Nathan Sorenson and Philippe Pasquier
[2] described in the previous subsection generates directly
new levels (it searches the space of levels), the search-based
generator in this case only generates another generator (it
searches the space of generators) which is then responsible
for the actual level generations. That is also the reason for
the slightly weird name of the paper.

The outer generator is just like in the previous case an evo-
lutionary algorithm, although this time instead of a fitness
function a direct user input is used to determine the quality
of levels. That means that in each iteration, the current gen-

eration is presented to the user and the user selects which
generators produce the best levels and should therefore sur-
vive and contribute to the next generation. The distinct
disadvantage of this process is that the evolution process is
significantly slower as user interaction is needed (it increases
the need of providing a good quality initial population). On
the other hand, once a good generator is found, it can be
used to generate multiple different levels.

Another compositional algorithm, by Tomoyuki Shimizu
and Tomonori Hashiyama [2], uses a completely different
approach. The principle is somehow similar to those al-
ready mentioned constructive algorithms that rely on pre-
pared hand-crafted chunks. This algorithm also composes
the final level from preexisting parts. Those parts, however,
are created with the help of interactive evolutionary algo-
rithms (interactive means that just like in the previous case,
the parts are evaluated by a human designer).

4. ADAPTATION TO THE PLAYER
The adaptation techniques are trying to reflect the fact

that every player is different, has different skill and different
playing style. Therefore to make the player as happy as pos-
sible, we should take his personal preferences into account
and generate levels that are tailored to his needs. So what
is common for all the adaptation algorithms is that they
first start by analyzing the player’s gameplay. The analysis
usually produces several different generalized characteristics
that are somehow interpreted and translated into generator
configuration. The adaptation is also a repeating process.
With every finished level, the algorithm gains more informa-
tion about the player and is able to predict his needs with
increased accuracy.

One of the existing adaptation techniques is described in
detail in the paper Towards Automatic Personalized Content
Generation for Platform Games [3]. They use a very simple
existing agent-based level generator that they took from the
Open Source implementation of Mario Infinite Mario Bros.
The levels are automatically generated by placing features
(tiles of different type) into the level according to certain
heuristics as specified by input parameters.

The essential part is data analysis. They used data from
existing research containing gameplay descriptions of play-
ers playing Infinite Mario Bros. The data was divided into
three groups: level characteristics (number of gaps, average
width of gaps, gap placement etc.), gameplay characteristic
(time needed to complete the level, time spent running, time
spent in large mode etc.) and amount of fun. The data anal-
ysis was conducted using perceptron networks and the goal
was to train the networks to predict fun, frustration and
challenge based on given input characteristics. The focus
was mainly on level characteristic as those are controllable
characteristics (they correspond to the generator input pa-
rameters). This analysis allowed them to predict whether a
particular player, with his unique gameplay style, will enjoy
a particular level.

The actual online adaptation mechanism works as follows:
They observe the player which gives them necessary game-
play characteristics (the player has to obviously finish at
least one random level before the adaptation can start).
Then they use the trained multilayer perceptron networks to
perform an exhaustive search in the space of level character-
istics to find for which values (i. e. generator parameters)
the highest amount of fun is predicted. Those values are

then used for generating the next level. The authors con-
ducted several experiments that proved that this approach
does increase fun of the levels.

Similar (although way simpler) style of adaptation is used
in The Hopper Level Generator [2]. Players are classified
in two ways: by the type of behavior they exhibit, and by
their skill level. The authors recognize three different behav-
ior styles: a speed run style, enemy-kill style, discovery style.
These categories are not mutually exclusive, i. e. one player
can be put in more of these categories. As of the skill level,
there are three distinct categories that determine the target
difficulty: easy, medium and hard. The categories and clas-
sification rules have been derived from informal observation
of number of different players (no formal analysis, like in the
previous case, has been conducted).

The actual level generator is a constructive one, similar to
those already described. The level is built from left to right,
with probabilities determining which type of tile should be
placed next. The probabilities are tuned based on the in-
ferred player types and categories. On top of that, the gen-
erator uses few little independent adaptation tweaks. For
example, it takes into account the frequency of deaths on an
obstacle of certain type and then reduces (or increases) the
frequency of such an obstacle in the next level. For instance,
if the player tends to fall a lot into gaps, then the next level
will have a reduced number of gaps.

5. CONCLUSION
The paper described several very different approaches to-

wards the generation of platformer levels. Just the fact that
the approaches vary so much implies that there is no clear
number one way to go and that therefore this area has still
a lot of potential to offer.

6. REFERENCES
[1] M. Kerssemakers, J. Tuxen, J. Togelius, and G. N.

Yannakakis. A procedural procedural level generator
generator. In Computational Intelligence and Games
(CIG), 2012 IEEE Conference on, pages 335–341.
IEEE, 2012.

[2] N. Shaker, J. Togelius, G. N. Yannakakis, B. Weber,
T. Shimizu, T. Hashiyama, N. Sorenson, P. Pasquier,
P. Mawhorter, G. Takahashi, et al. The 2010 mario ai
championship: Level generation track. Computational
Intelligence and AI in Games, IEEE Transactions on,
3(4):332–347, 2011.

[3] N. Shaker, G. N. Yannakakis, and J. Togelius. Towards
automatic personalized content generation for platform
games. In AIIDE, 2010.

[4] G. Smith, M. Cha, and J. Whitehead. A framework for
analysis of 2d platformer levels. In Proceedings of the
2008 ACM SIGGRAPH symposium on Video games,
pages 75–80. ACM, 2008.

[5] G. Smith, M. Treanor, J. Whitehead, and M. Mateas.
Rhythm-based level generation for 2d platformers. In
Proceedings of the 4th International Conference on
Foundations of Digital Games, pages 175–182. ACM,
2009.

